

Revision History

<u>Rev. No.</u>	<u>History</u>	<u>Issue Date</u>
1.0	Initial issue	Apr.15,2014
2.0	Revise "Chiplus reserves the right to change product or	Nov. 8, 2021
	specification without notice" to "Chiplus reserves the right to	
	change product or specification after approving by customer."	

Rev. 2.0

CS18FS1616(3/5/W) CS16FS1616(3/5/W)

GENERAL DESCRIPTION

The CS16FS1616(3/5/W) and CS18FS1616(3/5/W) are a 16,789,216-bit high-speed Static Random Access Memory organized as 1M(2M) words by 16(8) bits. The CS16FS1616(3/5/W) (CS18FS1616(3/5/W)) uses 16(8) common input and output lines and have an output enable pin which operates faster than address access time at read cycle, And CS16FS1616(3/5/W) allows that lower and upper byte access by data byte control(\overline{UB} , \overline{LB}). The device is fabricated using advanced CMOS process, 6-TR based cell technology and designed for high-speed circuit technology. It is particularly well suited for use in high-density high-speed system applications. The CS16FS1616(3/5/W) is packaged in 12x20mm 48- pin TSOP1 and 48FBGA, The CS18FS1616(3/5/W) is packaged in a 400mil 44-pin TSOP2 and 48FBGA.

FEATURES

- Fast Access Time 8,10,12,15ns(Max)
- CMOS Low Power Dissipation Standby (TTL): 35mA (Max.) (CMOS): 28mA (Max.) Operating: 110mA (8ns, Max.)

: 90mA (10ns , Max.)

- Single 3.3±0.3V or 5.0±0.5V Power Supply
- Wide range (1.65V~3.6V) of Power Supply
- TTL Compatible inputs and Outputs
- Fully Static Operation, No Clock or Refresh required
- Three State Outputs
- Data Byte Control(x16 Mode)
 - \overline{LB} : I/O₀~I/O₇, \overline{UB} : I/O₈~I/O₁₅
- Standard 48TSOP1 and 48FBGA Package Pin Configurations for 1M x 16
- Standard 44TSOP2 and 48FBGA Package Pin Configurations for 2M x 8
- Operating in Commercial and Industrial Temperature range.

2

CS18FS1616(3/5/W) CS16FS1616(3/5/W)

Order Information

Density	Ora	Dort Number	Speed		Dookogo	Tomp	
Density	Org.	Part Number	V _{CC} (V)	t _{AA} (ns)	t _{OE} (ns)	Раскауе	remp.
		CS16FS16163TC(I)-08	3.3	8	4	48 TSOP1	
			3.3	8	4	48 TSOP1	
		CS16FS1616WTC(I)-08*	2.5	10	5	48 TSOP1	
			1.8	12	6	48 TSOP1	
		CS16FS1616WHC(I)-08	3.3	8	4	48 FBGA	
			3.3	8	4	48 FBGA	
		CS16FS1616WHC(I)-08*	2.5	10	5	48 FBGA	
			1.8	12	6	48 FBGA	
16Mb	11/1/16	CS16FS16165TC(I)-10	5	10	5	48 TSOP1	C : Commercial
	TIVIX TO	CS16FS16163TC(I)-10	3.3	10	5	48 TSOP1	I : Industrial
			3.3	10	5	48 TSOP1	
		CS16FS1616WTC(I)-10*	2.5	10	5	48 TSOP1	
			1.8	15	7	48 TSOP1	
		CS16FS16165HC(I)-10	5	10	5	48 FBGA	
		CS16FS16163HC(I)-10	3.3	10	5	48 FBGA	
			3.3	10	5	48 FBGA	
		CS16FS1616WHC(I)-10*	2.5	10	5	48 FBGA	
			1.8	15	7	48 FBGA	

Donaity	Ora	Port Number		Speed		Baakaga	Tomp
Density	Org.	Fait Number	Vcc(V)	t _{AA} (ns)	t _{OE} (ns)	Fackage	remp.
		CS18FS16163GC(I)-08	3.3	8	4	44 TSOP2	
			3.3	8	4	44 TSOP2	
16Mb	21429	CS18FS1616WGC(I)-08*	2.5	10	5	44 TSOP2	C : Commercial
DIVIOI			1.8	12	6	44 TSOP2	I : Industrial
		CS18FS16163HC(I)-08	3.3	8	4	48 FBGA	
		CS18FS1616WHC(I)-08*	3.3	8	4	48 FBGA	

Rev. 2.0

CS18FS1616(3/5/W) CS16FS1616(3/5/W)

	2.5	10	5	48 FBGA
	1.8	12	6	48 FBGA
CS18FS16165GC(I)-10	5	10	5	44 TSOP2
CS18FS16163GC(I)-10	3.3	10	5	44 TSOP2
	3.3	10	5	44 TSOP2
CS18FS1616WGC(I)-10*	2.5	10	5	44 TSOP2
	1.8	15	7	44 TSOP2
CS18FS16165HC(I)-10	5	10	5	48 FBGA
CS18FS16163HC(I)-10	3.3	10	5	48 FBGA
	3.3	10	5	48 FBGA
CS18FS1616WHC(I)-10*	2.5	10	5	48 FBGA
	1.8	15	7	48 FBGA

*means max. speed

PIN CONFIGURATIONS

CS18FS1616(3/5/W) CS16FS1616(3/5/W)

	1	2	3	4	5	6
Α	NC	OE	A0	A1	A2	NC
В	NC	NC	A3	A4	CS	100
С	NC	NC	A5	A6	101	102
D	Vss	NC	A17	A7	103	Vcc
Е	Vcc	NC	NC	A16	104	Vss
F	NC	NC	A14	A15	105	106
G	NC	A19	A12	A13	WE	107
Н	A18	A8	A9	A10	A11	A20

6x8mm mini-BGA with ball pitch 0.75mm

CS18FS1616(3/5/W) – (2M x 8) 48 ball mini-BGA

	1	2	3	4	5	6
А	LB	OE	A0	A1	A2	NC
В	108	UB	A3	A4	CS	100
С	109	1010	A5	A6	101	102
D	Vss	I011	A17	A7	103	Vcc
Е	Vcc	IO12	NC	A16	104	Vss
F	1014	IO13	A14	A15	105	106
G	1015	A19	A12	A13	WE	107
Н	A18	A8	A9	A10	A11	NC

CS16FS1616(3/5/W) – (1M x 16) 48ball mini-BGA

• FUNCTIONAL BLOCK DIAGRAM

Absolute Maximum Ratings*

Para	ameter	Symbol	Rating	Unit
Valtaga an Any Din	3.3V Product			
Polativo to Voo	5.0V Product	Vin, VOUT	-0.5 to Vcc+0.5V	V
	Wide Vcc** Product			
Voltage on Vcc	3.3V Product		-0.5 to 4.6	
Supply Relative to	5.0V Product	Vin, Vout	-0.5 to 7.0	V
Vss	Wide Vcc** Product		-0.5 to 4.6	
Power Dissipation		PD	1.0	W
Storage Temperature		Tstg	-65 to 150	°C
Operating Temperatur	e Commercial	TA	0 to 70	°C
Industrial		T _A	-40 to 85	°C

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied.

Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**Wide VCC Range is 1.65V~3.6V

Recommended DC Operating Conditions*(T_A=0 to 70° C)

Parameter	Operating Vcc(V)	Symbol	Min.	Тур.	Max.	Unit
	5.0	Vcc	4.5	5.0	5.5	
Supply Voltage	3.3	Vcc	3.0	3.3	3.6	
Supply vollage	Wide 2.4~3.6	Vcc	2.4	2.5/3.3	3.6	
	Wide 1.65~2.2	Vcc	1.65	1.8	2.2	
Ground		Vss	0	0	0	V
	5.0	Vін	2.2	-	Vcc+0.5	
Input High Voltage	3.3	Vih	2.0	-	V _{CC} +0.5	V
Input High voltage	Wide 2.4~3.6	Vін	2.0	-	Vcc+0.3	
	Wide 1.65~2.2	Vін	1.4	-	Vcc+0.2	

6

CS18FS1616(3/5/W) CS16FS1616(3/5/W)

	5.0	VIL	-0.3	-	0.8	
Input Low Voltago	3.3	VIL	-0.3	-	0.8	
Input Low Voltage	Wide 2.4~3.6	VIL	-0.3	-	0.7	
	Wide 1.65~2.2	VIL	-0.2	-	0.4	

*The above parameters are also guaranteed for industrial temperature range.

DC and Operating Characteristics*(T_A=0 to 70° C)

Parameter	Symbol	Test Conditions		Min	Max	Unit
Input Leakage Current	Lı	V _{IN} =V _{SS} to V _{CC}		-2	2	uA
Output Leakage Current**	Ilo	$\overline{CS} = V_{IH} \text{ or } \overline{OE} = V_{IH} \text{ or } \overline{WE} = V_{IL}$ Vout=Vss to Vcc		-2	2	uA
Operating Current**	Icc	Min.Cycle,100% Duty <u>CS</u> =VIL, VIN=VIH or VIL,IOUT= 0mA	8ns 10ns 12ns 15ns		110 90 80 70	mA
Standby	Isb	Min. Cycle, $\overline{CS} = V_{IH}$		-	35	
Current	I _{SB1}	f=0MHz,		-	28	mA
		V _{CC} =4.5V, I _{OL} =8mA, 5.0V Product		-	0.4	
Output Low Voltage	Vol	V _{CC} =3.0V, I _{OL} =8mA, 3.3V Product & Wi V _{CC} ** Product	de	-	0.4	V
Level		Vcc=2.4V, IoL=1mA, Wide Vcc** Produc	rt	-	0.4	
		V_{CC} =1.65V, I _{OL} =0.1mA, Wide V_{CC} ** Pro	duct	-	0.2	
		V _{CC} =4.5V, I _{OH} = -4mA, 5.0V Product		2.4	-	
Output High Voltage	иt High Vcc=3.0V, Iон= -4mA, 3.3V Product ge Vон Vcc** Product			2.4	-	V
Level		Vcc=2.4V, IoH= -1mA, Wide Vcc** Prode	nA, Wide Vcc** Product			
		Vcc=1.65V, Іон= -0.1mA, Wide Vcc** Рі	oduct	1.4	-	

Rev. 2.0

*The above parameters are also guarantee for industrial temperature range.

**Wide V_{CC} Range is $1.65V \thicksim 3.6V$

Capacitance*(TA= 25°C, f= 1.0MHz)

Item	Symbol	Test Conditions	TYP	Max	Unit
Input/ Output Capacitance	Cı/o	V _{I/O} =0V	-	8	pF
Input Capacitance	CIN	V _{IN} =0V	-	6	pF

*Capacitance is sampled and not 100% tested.

Test Conditions*

Parameter	Value			
	0 to 3.0V (Vcc=3.3V or 5.0V)			
Input/ Output Capacitance	0 to 2.5V (V _{CC} =2.5V)			
	0 to 1.8V (Vcc=1.8V)			
Input Rise and Fall Time	1V/1ns			
Input and Output Timing Paferance Lovela	1.5V (Vcc=3.3V or 5.0V)			
	1/2Vcc (Vcc= 1.8V or 2.5V)			
Output Load	See Fig. 1			

*The above parameters are also guaranteed for industrial temperature range.

Rev. 2.0

CS18FS1616(3/5/W) CS16FS1616(3/5/W)

Fig 2

Functional Description (x8 Mode)

\overline{CS}	WE	\overline{OE}	Mode	I/O Pin	Supply Current
Н	Х	X*	Not Select	High-Z	ISB,ISB1
L	Н	Н	Output Disable	High-Z	lcc
L	Н	L	Read	Dout	lcc
L	L	Х	Write	D _{IN}	Icc

*X means don't care

Functional Description (x16 Mode)

CS18FS1616(3/5/W) CS16FS1616(3/5/W)

\overline{CS}	$\overline{CS} \overline{WE} \overline{OE} \overline{LB} **$	\overline{UR} **	Mode	I/O I	I/O Pin				
CD	""		LD	СЪ	mode	I/O ₀ ~I/O ₇	I/O ₈ ~I/O ₁₅	Current	
Н	Х	X*	Х	Х	Not Select	High-Z	High-Z	Isb, Isb1	
L	Н	н	Х	Х	Output	Lliah 7	Lliah 7	laa	
L	Х	Х	Н	Н	Disable	nign-z	nign-z	ICC	
			L	н		Dout	High-Z		
L	Н	L	Н	L	Read	High-Z	Dout	lcc	
			L	L		Dout	Dout		
			L	Н		Din	High-Z		
L	L	X	Н	L	Write	High-Z	Din	lcc	
			L	L		D _{IN}	DIN	1	

*X means don't care

Data Retention Characteristics*(TA=0 to $70^{\circ}C$)

Parameter	Product	Operating V _{CC} (V)	Symbol	Test Condition	Min.	Тур.	Max.	Unit
	5.0V Product	5.0			2.0	-	5.5	
V _{CC} for Data Retention	3.3V Product	3.3			2.0	-	3.6	V
	Wide 2.4V~3.6V	2.5/3.3	VDR	CS 2Vcc - 0.2V	2.0	-	3.6	
	Wide 1.65V~2.2V	1.8			1.5	-	3.6	
	5.0V Product	5.0		V _{CC} =2.0V			20	
Data	3.3V Product	3.3	laa	CS ≥V _{CC} - 0.2V V _{IN} ≥ V _{CC} - 0.2V or			20	m۸
Retention Current	Wide 2.4V~3.6V	2.5/3.3	IDR	V _{IN} ≤0.2V			28	
	Wide 1.65V~2.2V	1.8		V _{CC} =1.5V, <u>CS</u> ≥V _{CC} - 0.2V, V _{IN} ≥V _{CC} -			28	

Rev. 2.0

CS18FS1616(3/5/W) CS16FS1616(3/5/W)

				0.2V or V _{IN} ≤0.2V				
Data Retention Set-Up Time			tsdr	See Data	0	-	-	nS
Recovery Time			t _{RDR}	Retention Wave form (below)	5	-	-	mS

Data Retention Wave form

Read Cycle*

Deremeter	Symbol	8	ns	10ns		12ns		15ns		Linit
Falametei	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Read Cycle Time	t _{RC}	8	-	10	-	12	-	15	-	ns
Address Access Time	taa	-	8	-	10	-	12	-	15	ns
Chip Select to Output	tco	-	8	-	10	-	12	-	15	ns
Output Enable to Valid	tor		1		5		6		7	ne
Output	UCE	-	4	-	5	-	0	-	-	115
\overline{UB} , \overline{LB} Access Time**	tва	-	4	-	5	-	6	-	7	ns
Chip Enable to Low-Z	t i →	3		3		3		3		ne
Output	ιLZ	5	-	5	-	5	_	5	_	115
Output Enable to Low-Z	tour	0	_	0	_	0	_	0	_	ne
Output	LOLZ	0	_	0		0	-	0	-	113
\overline{UB} , \overline{LB} Enable to Low-Z	tou z	0	_	0	_	0		0	_	ne
Output**	UBLZ	0	-	0	-	0	-	0	-	115
Chip Disable to High-Z	tu-	0	1	0	5	0	6	0	7	ne
Output	чнz	0	4	0	ວ	0	0	0	/	115
Output Disable to High-Z	touz	0	Л	0	5	0	6	0	7	ne
Output	UHZ	0	+	0	5	0	0	0	1	115

11

Rev. 2.0

CS18FS1616(3/5/W) CS16FS1616(3/5/W)

\overline{UB} , \overline{LB} Disable to High-Z Output**	tвнz	0	4	0	5	0	6	0	7	ns
Output Hold from Address	tau	2		2		2		2		no
Change	LOH	5	-	3	_	5	-	5		115
Chip Selection Power Up	+	0		0		0		0		ns
Time	ιΡU	0	-	0	-		-		-	
Chip Selection Power	taa		0		10		10		15	no
Down Time	ιPD	-	0	-	10	-	12	-	15	ns

*The above parameters are also guaranteed for industrial temperature range.

Write Cycle*

Deremeter	Symbol	8	ns	10)ns	12ns		15ns		Lloit
Farameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Write Cycle Time	twc	8	-	10	-	12	-	15	-	ns
Chip Select to End of Write	tcw	6	-	7	-	9	-	12	-	ns
Address Set-up Time	t _{AS}	0	-	0	-	0	-	0	-	ns
Address Valid to End of Write	taw	6	-	7	-	9	-	12	-	ns
Write Pulse Width(\overline{OE} High)	twp	6	-	7	-	9	-	12	-	ns
Write Pulse Width(\overline{OE} Low)	twP1	8	-	10	-	12	-	15	-	ns
\overline{UB} , \overline{LB} Valid to End of Write**	tвw	6	-	7	-	9	-	12	-	ns
Write Recovery Time	twr	0	-	0	-	0	I	0	-	ns
Write to Output High-Z	twнz	0	4	0	5	0	6	0	7	ns
Data to Write Time	tow	4	-	5	-	7		8	-	ns

12

Rev. 2.0

CS18FS1616(3/5/W) CS16FS1616(3/5/W)

Overlap										
Data Hold from Write	tou	0		0		0		0		nc
Time	UH	0	-	0	-	0	-	0	-	115
End of Write to	t	2		0		2		2		20
Output Low-Z	LOW	3	-	3	-	3	-	3	-	ns

*The above parameters are also guaranteed for industrial temperature range.

Timing Diagram

Timing Waveform of Read Cycle (1) (Address Controlled, $\overline{CS} = \overline{OE} = V_{IL}$, $\overline{WE} = V_{IH}$, \overline{UB} , $\overline{LB} = V_{IL}^{**}$)

** Those parameters are applied for x16 mode only.

Timing Waveform of Read Cycle (2) (\overline{WE} =VIH)

Rev. 2.0

CS18FS1616(3/5/W) CS16FS1616(3/5/W)

NOTES (Read Cycle)

- 1. WE is high for read cycle
- 2. All read cycle timing is referenced from the last valid address to the first transition address.
- t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit condition and are not referenced to V_{OH} or V_{OL} levels.
- At any given temperature and voltage condition, t_{HZ} (Max.) is less than t_{LZ} (Min.) both for a given device and from device to device.
- 5. Transition is measured ±200mV from steady state voltage with Load (B). This parameter is sampled and not 100% tested.
- 6. Device is continuously selected with $\overline{CS} = V_{IL}$.
- 7. Address valid prior to coincident with CS transition low.
- 8. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.
- ** Those parameters are applied for x16 mode only.

14

CS18FS1616(3/5/W) CS16FS1616(3/5/W)

CS18FS1616(3/5/W) CS16FS1616(3/5/W)

** Those parameters are applied for x16 mode only.

Timing Waveform of Write Cycle (4) (\overline{UB} , \overline{LB} Controlled)

Rev. 2.0

NOTES (Write Cycle)

write to the end of write.

- 1. All write cycle timing is referenced from the last valid address to the first transition address.
- 2. A write occurs during the overlap of a low \overline{CS} , \overline{WE} , \overline{LB} and \overline{UB} . A write begins at the latest transition \overline{CS} going low and \overline{WE} going low; A write ends at the earliest transition \overline{CS} going high or \overline{WE} going high. twp is measured from the beginning of
- 3. t_{cw} is measured from the later of \overline{CS} going low to end of write.
- 4. t_{AS} is measured from the address valid to the beginning of write.
- 5. WE is measured from the end of write to the address change. t_{WR} applied in case a write ends as CS or \overline{WE} going high.
- 6. If \overline{OE} , \overline{CS} and \overline{WE} are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase of the output must not be applied because bus contention can occur.
- 7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.
- 8. If \overline{CS} goes low simultaneously with \overline{WE} going or after WE going low, the outputs remain high impedance state.
- 9. D_{OUT} is the read data of the new address.
- 10. When \overline{CS} is low : I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be applied.
- ** Those parameters are applied for x16 mode only

CS18FS1616(3/5/W) CS16FS1616(3/5/W)

Package outline dimensions

44L-TSOP2-400mil

SECTION A-A

Note: Plating thickness spec : 0.3 mil ~ 0.8 mil.

UNIT	MBOL	А	A1	A2	b	b1	с	c1	D	Е	E 1	e	L	L1	у	θ	
mm	Min.	1.00	0.05	0.95	0.30	0.30	0.12	0.12	18.31	10.06	11.56	0.70	0.40	0.70		0°	
	Nom.	1.10	0.10	1.00		2			18.41	10.16	11.76	0.80	0.50	0.80	-	1.77	
	Max.	1.20	0.15	1.05	0.45	0.40	0.21	0.16	18.51	10.26	11.96	0.90	0.60	0.90	0.1	8°	
inch	Min.	0.0393	0.002	0.037	0.012	0.012	0.005	0.005	0.721	0.396	0.455	0.0275	0.0157	0.0275	-	0°	
	Nom.	0.0433	0.004	0.039	I	1		1	0.725	0.400	0.463	0.0315	0.0197	0.0315	-	3 4 3	
	Max.	0.0473	0.006	0.041	0.018	0.016	0.008	0.006	0.729	0.404	0.471	0.0355	0.0237	0.0355	0.004	8°	

Rev. 2.0

CS18FS1616(3/5/W) CS16FS1616(3/5/W)

Rev. 2.0

48L-TSOP1-12x20mm

Chiplus reserves the right to change product or specification after approving by customer.

19

CS18FS1616(3/5/W) CS16FS1616(3/5/W)

48ball mini-BGA-6x8mm (ball pitch: 0.75mm)

